NOTATION

N, number of cascades; p, electrical re51st1v1ty, °cm; z, thermoelectric Q-factor param-
eter, K‘l, x, coordinate, cm; y(xp), y(xk), values of the function y(x) immedlately to the
left and the right of the point xy, respectively; T, absolute temperature, °K; Th, T., tem~-
peratures of the heat-scattering and heat-receptive faces of the cascade unit, °K; 6T, tempera-
ture jump at the cascade junction, °K; i, electric current density, A/em®; q = Q/I, specific
heat, flux, V; Q, total heat flux in the thermoelement cross section, W; I, electric current,

Aj q§m, qiys mean specific heat fluxes at the cold and hot faces of the k-th cascade, V; Qs
heat liberated from the object being cooled, W; Qy> heat transmitted to the surrounding med-
ifum, W; u = Qh/QC, J = 1n u, functlonal to be minimized; W, power, W; Rg’ electrlcal resist-
ance of unit area of contact, Q°cm?; ar, heat-transfer coefficient, W/m*-K; OT, heat inflow
to cold face of k-th cascade from the surrounding medium, W; s, Junction area, cm®; 7, thermo-
element length, cm; Fo, area of external face of substrate being cooled, cm®; v, Qvfactor
reduction parameter. Indices: n, p, electron, hole thermoelement; k, number of cascade.
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NUMERICAL DETERMINATION OF TWO-DIMENSIONAL TEMPERATURE FIELDS
IN TRANSPIRATION COOLING

A. V. Kurpatenkov, V. M. Polyaev, UDC 536.24
and A. L. Sintsov

We present a numerical method for solving a wide range of transpiration cooling
problems.

It is well known that an analytic calculation of one-dimensional temperature fields in
transpiration cooling of a plate with any (linear) boundary conditions reduces to a sequence
of standard mathematical operations, and presents no difficulties. However, even for a one-—
dimensional problem of the transpiration cooling of a cylinder, and especially for two-dimen-
sional problems, analytic solutions exist only in rare special cases. Accordingly, it is
clear that a more general study of transpiration cooling processes must be based on a numeric-—
al solution of the appropriate equations.

We know of only one paper devoted to a discussion of the numerical solution of a two-
dimensional transpiration cooling problem [1]. In constructing an algorithm Koh and Colony
[1] employed a discrete Fourier transform. In doing this they essentially used the simplic-
ity of the eigenfunctions of a difference operator along one of the directions. A rather
wide range of problems can be solved by using the algorithm described in [1]. The optimum
use of the Fourier transform described, for example, in [2] enables one to obtain a rather
economical machine realization of the algorithm. However, the algorithm proposed by Koh and
Colony [1] has shortcomings. In particular, it cannot be used to solve problems: 1) of once-
through cooling of a porous cylinder; 2) with boundary conditions of the third kind along im-
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permeable walls; 3) with a variable flow rate of the coolant along a permeable wall, and
some others.

We propose an algorithm which can be used to solve both the problems named above and
a number of others, in particular problems of cooling bodies with a variable porosity and
bodies which are surfaces of revolution.

In constructing a difference scheme of the problem we start from the following integral
equations, assuming that they are valid for any finite volume V of a porous medium:

{(n, dS = [ fay (T —1)— g}V, 1)

— j (n, m)c,1dS = f {a, (T —7)—q,) dV, (2)

where S is the surface bounding the volume, n is the inward normal to the surface, q is the
heat flux, T and T are respectively the temperatures of the solid phase and the coolant, ay
is the volumetric heat—~transfer coefficient, Cp is the specific heat, m is the specific flow
rate of the coolant, qy is the volumetric heat source strength, and a comma between two vec-
tors indicates their scalar product. We do not discuss the rather subtle questions of the
limits of applicability of Eqs. (1) and (2), and assume that two temperatures T and T are as-
sociated with each point of a porous body, and that heat transfer between the phases is ade-
quately described by the right-hand side of Eqs. (1) and (2). We define the vector q by the
formula

qg=—AgradT, (3)
where A is a symmetric positive tensor which depends on the physical and structural char-
acteristics of the porous body. We neglect the thermal conductivity of the fluid phase, and
assume that the principal axes of the tensor coincide with the coordinate system, and that
the principal values along the axes are Ay and Ay.

We construct an algorithm for a cylindrical body whose axis of symmetry coincides with
either the X or Y axis. We note that the X axis will always be in the direction of the cool-
ant velocity, and that the Y axis is perpendicular to it. The body extends a distance L
along the X axis and H along Y. All the linear dimensions along the X axis are relative to
L, and those along Y are relative to H. 1If the axis of the cylinder coincides with the X
axis, we characterize the latter by the radii Y™ and YV, equal to Y% + 1; otherwise, we
characterize them by the radii X2 and Xb, equal to X% + 1. We note that x¢ always corre-
sponds to the entrance surface of the coolant into the porous body, and XP to the exit sur—
face. The quantities L and H are always positive, while the quantities Y™ and YV or X% and
Xb may also be negative. In order to preserve freedom in the choice of the axis of symmetry,
we use Y2, YV and X%, xb simultaneously. Depending on the axis of symmetry, the correspond-
ing radii in the calculations must be taken infinite (in the program realization this means
sufficiently large numbers). It will be clear from the construction of the algorithm what
changes must be introduced to take account of variations of the porosity, flow rate, etc.

We introduce criteria which are important for the probIem of transpiration cooling (T
is the temperature scale):

%= hall (WL, v = @l g,= g, HE (M T) Y,
o = a,L(com)™t, m, = me HE(AL)™Y, m, = me,LAS".

We note the equalities v = OW,, T, = %ily.

We cover the plane of the body with a net whose sides are parallel to the X and Y axes.
We denote by M the number of points of intersection of the net with the X axis, and by N the
numbér of intersections with the Y axis, and number them in the directions of the respective
axes. Then we can associate with each node of the net two integers I and J which are the
analogs of the coordinates of the node. We emphasize particularly that T will be the analog
of the coordinate along the X axis, and J the analog of the coordinate along Y. We denote by
11 the step of the net along X relative to L, and by hjy the step along Y relative to H. Fig-
ure 1 shows an internal node of the net. We obtain the equation relating the temperature at
this node to the temperature at the neighboring nodes by applying Eq. (1) to the volume
shaded on the figure. As usual, the integrals and derivatives are evaluated by using linear
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X | Fig. 1. Net on which the difference ap-
J+1 - A ;. proximation of the heat-balance equa-
tions is formulated. The heavy lines
are the sides of the net, and the points
I T <) marked are its nodes. The shaded region
1 //4/Q?'fﬁfﬂ/ is the volume for which the approxima-
; 54 }477; S i tion is formulated. Xy, X1, and X; are
éDi 292// LJéf; the radii measured on the X axis, and
. / ; Y7 and Yy are the radii measured on the
. J-1 I 4 Y axis.
| ﬂ ) X, 7 B

interpolation of the temperature between nodes. We expand the left-hand side of (1):

[(n, qdS= d{ 4G dS -+ 5 1,9,4S. (4)
The subscripts denote projections on the corresponding axes. We consider first the first term
on the right-hand side of (4). Simple transformations give

( § R dS\LA (ThV )7~ Qi = @ Ty =,y + 6Ty (5)

— v 0 Oy oy L e 6707\~
(lI = ;'\,1 (A]l[_ll]) b CI = 1(1 (X[l]ll) 1, (6)
By=a,+cp I = (L, + 12, X7 = (X7 + XD/,

Vij is the volume of the region shaded in Fig. 1. It is easy to determine the physical mean-
ing of (5): it is the dimensionless volumetric rate of heat conduction along the X axis.

We note that the temperature here and henceforth is relative to the scale T. Relation (5)

is valid for the internal nodes of the net. We write an analogous relation for the boundary
nodes:

(L\a ﬂqudS)Iﬂ (T?vxvlj)_i ~ Qif = — blTxJ + CITQJ + (’)aqg-’.’ - (7)
<\n ﬂquds)Lz (TheV p ) % Quas = @y Ty — by T — @4, ®)

of = XUKIUYH, 0 = XUXyly) ™, M' =M — 1. )

In calculating the coeffi¢ients a, b, and c with (6) for I = 1, the M quantities a,, lo,
cM, and Iy must be set equal to zero, and X; and Xy equated to X2 and Xb, respectively. The
last terms in (7) and (8) represent the heat fluxes at the entrance to and exit from the
porous body. For them we have the following equations:

95 = G + G G2 = G -+ BP(T® —09) + gL, (10)

Here the superscript a refers to the entrance to the porous body (the side of the net per-
pendicular to the X axis, with index I = 1), b refers to the exit, 0P is the temperature of
a certain external flow, q%éb) is the X component of the external heat flux supplied to the
surface of the body at the coolant entrance (exit), similarly q§§b) is the X component of
the wall—coolant heat flux, Bb is the Biot number, describing the heat exchange with the ex-
ternal flow. The scales used are L, Ay, and T.

We can obtain expressions similar to (5), (7)-(10) for the second term on the right-
hand side of (4):
Qs = ATy — BT, —CT

1,J4+1° (11)
Q‘}ll = _'BITII + C1T12 T manl, (12)
Qv = AyT . — BT,y — 0%y, (13)

0" = Y"(VShi) 1, o = Y2(YNRY) ™, N' =N — 1,
gy =P (" —T") + Gyer Gy = —PB°(6"—T?) + Gye-

The superscript n refers to the side of the body below the Y axis, and v to the upper side.
The remaining notation is analogous to that in (10). It should be kept in mind that here H,
Xy, and T are used as scales. The subscript J in the last terms in (7) and (8) and I

(14)
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in (12) and (13) mean that the heat flux corresponds to the J-th node on the Y axis in the
first case, and to the I-th node on the X axis in the second. :

Taking account of the above, Eq. (1) gives for each node of the net:

%Qs + Q!{J =V, (TU "T[J)—‘ G- (15)
We relate the coolant temperature to that of the solid phase. To do this we apply Eq.

(2) to the volume bounded by two neighboring nodes in the direction of the X axis, with aunit
side along the Y axis:

X, — X, oy =0T, —t)+0,_ (T,_, —7,_ )} X"1—1/2. (16)
Simple transformations give the following relations:
T=u T T T T, (17

where
=X"0,_1,_ A v,_, =X,  —X"o,_ I, )AY,

w, = X"ol A, A= 2X, + X0, X" =(X,_, + X)/2.

We note that oy, like vy in (15), denotes the value of the criterion defined at node number
I on the X axis.

Formula (17) is valid for the internal nodes of the net. Before deriving the necessary
relations for the boundary nodes we note the following. The heat flux from the coolant to
the wall at the entrance to or the exit from the body can be defined both in terms of coolant
temperatures far from the wall (1t~ at the entrance and 1t at the exit) and in terms of a
certain mean temperature. In our (linear) case in terms of the arjthmetic mean: at the en-
trance in terms of T% = Yl + Ta), and at the exit in terms of rg = A(Tb + 1tH). The
choice of the controlling temperature of the coolant is generally arbitrary, and depends on
the method of calculating the heat-transfer coefficients o? at the entrance and ab at the
exit. We use the arithmetic mean temperature of the coolant.

The wall—coolant heat-flux balance at the entrance gives

a - a aira . @ a a’L
N (10 —77) = — G =V (T0 —T), v* = - (18)
Transformations of (18) lead to the following equalities: ¢
=y + @, T — g =pe(To— "),
U= (2—0)/(2 + 0%, w, =1—0,, B7=mw, (19)
0% == v&/n; is the Stanton number at the entrance.
From the heat-flux balance at the exit
. 5
(et —1b) = - vb(Tb——'rg,), vo = 2% L ,
X
we obtain the formulas
T =, T + 0,7, ghr =P (T* — ),
b p
Uy = (2 — (2 + 0%, ty=1—0y, o= mathy, (20)

b
o? = vb/m;.

Equations (19) and (20) enable us to extend (17) to the boundary nodes of the net. To do
this it is sufficient to take u, and wy equal to zero, and to assume Ty., equal to t~ for
I =1, and equal to'1.'+ for I = M + 1. The superscript a, as usual, denotes I = 1, and b de-
notes I = M,

Setting I =1, 2, ..., M in (17), we obtain a set of formulas, each of which, beginning
with the second, contains on the right-hand side the temperature of the coolant determined
by the preceding equation. This enables us to derive the following important relation which

holds for any I: I

Ty =Py % T E Pogir,1—15eTa + w,T,, (21)
=1 :

Sq == lg + Vg®q, Pin =0 Uiy~ - - - V(U <K), Proge=1.
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In (21), as usual, if the upper index of the sum is smaller than the lower, the sum must be
set equal to zero.

Relation (21) enables us to eliminate the coolant temperature from (15), and in this way
to obtain a system of linear equations for the Tpj.

We introduce the following notation:
TJ = (Tm Topr - -, TMJ)’ = (Tu’ Togr + 0 s TMJ)’
and in general we shall use the vector notation to symbolize an ordered set of M quantities -

defined at the nodes of the net along a single level parallel to the X axis. Then formula
(2) can be given the vector form

Ty Fry - C‘BTJ; (22)

where F is a vector whose I-th component is po,I-;; 7] is the coolant temperature far from
the entrance at the J-th level on the Y axis; ¢ is a lower triangular matrix of order M x M,
whose I-th row consists of P2 T-1s P3sT_15 -+ PI I-15 W[, respectively.

We introduce the M x M matrices &t and %, the first of which has unity in the first place,
with the remainder zeros, and the second has unity in the last place, with the remainder zeros,
and the vectors fi and n, the first of which has unity in the first place, with the remainder
zeros, and the second has unity in the last place, with the remainder zeros.

The notation introduced enables us to rewrite Egqs. (10) and (14) in vector form:

qj = — BTy - BiT + ¢ n, (22
= LT, — B9t — (0 — gl , o
0 = ST, + 65 (5" + ), @

a4 = 63T, — 8 (36" — g2 )

Bere BE = gb + BE; 63 and 6} are Kronecker deltas, if we keep in mind that n corresponds to
J=1, and v to J = N. 1In view of this, (25) is different from zero only for J = 1, and (26)
is different fiom zero only for J = N. We denote the last terms in (23), (24), (25), and
(26) by qﬁa, qu, qJn, and q?v, respectively. Now we can write (5)-(8) in the vector form

Q) = 0°q)" + (D7 — BN — o)b@ T, + mbﬁ’é_ill-r |+ wbqf, (27)
where Qj is a tridiagonal matrix which has —b,, c, in the first row, @z, —bs, ¢, in the
second row, ..., ay, —by in the last row. The elements off the three diagonals are zero.

Combining (11)-(13) in vector form gives
Q) = w0"q)" - AT, —BT,+ T, + 0’qr, (28)

where B& = By + ngan + 8VwVBY, Substituting (27) and (28) into (15) in vector form, and
taking account of (21), we have

AJTJ_!+(Q——B})TJ+CJTJ+I:(pJ (29)

for 3 =1, 2, ..., N. We recall that A, = Cy = 0. We writeout all the terms of Eq. (29) in
detail:

Q = % (Y — 0BT — 0fpiN) — Dy + Qs

Qo = (x0’BiR + D) P,

where D, is a diagonal matrix with the diagonal elements v,, ..., vM. We denote the unit
vector by i. Then

* —_— -
Q,=—qi— fry — 19,
where
* *q s n_*n v "‘i’
qr = no%q, + %x0lqs + o'qs" -+ e'qs;

f = %0%Bin + (xo’f R + D,) F.

The system (29) is the result of all the preceding calculations. It is the difference
approximation of Egs. (1) and (2) which establish the heat balance within a porous body. As
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regards the boundary conditions, on sides a and b conditions of the second or third kind
can be obtained by setting the numbers B or the external-heat fluxes equal to zero in (23)
and (24). It is well known that boundary conditions of the first kind can be obtained from
those of the third kind by a sufficient increase of the corresponding numbers B. Any com—
bination of boundary conditions is possible. All we have said can be transferred to bound-
ary conditions on sides n and v also.

Turning to the question of the solution of system (29), we note that the use of itera-
tive methods for systems of this type is essentially based on specific properties of them
expressed by certain numbers [2]. Obtaining these numbers for system (29) is rather diffi-
cult because of the "skewness" introduced into £ by the 9. matrices. This "abnormality" of
the system is a result of the specific process which it describes.

We solve (29) by the explicit matrix pivotal method [2]. The first step consists in
evaluating the following matrices and vectors:

A= Q—Br— AL, % )7
pJ:‘ 9IJ (WJ_AJ“_;__[), J = 1, 2, C ey N.

At the second step we calculate Tj:
Iﬁ:—Qﬁﬂh4+ﬁpJ:N;N—L..”L

The coolant temperature is then determined from (17) by using (19) and (20). The main dis-
advantage of the pivotal method is the necessity of inverting and storing N matrices of order
M x M.

It is not possible in the present article to discuss the analysis of the laws of trans-—
piration cooling processes. However, we illustrate the possibilities of the method described
by calculating a problem which was studied experimentally in [3].

The experimental model consisted of two coaxial tubes with the space between them filled
with steel shot, apparently sintered. The coolant was gaseous nitrogen. The inmner tube was
heated by hot gases. Koh and Stevens [3] measured the temperature distribution and the normal
heat flux along the wall of the hot tube from the porous metal side. Measurements showed
that the heat flux was practically constant along the wall. The temperature distributioms
were given in [3] for two flow rates of the coolant and a number of heat fluxes.

Let us calculate the temperature field for one of the flow rates. Without going into
details, we note that the internal scale of the medium (the equivalent hydraulic diameter in
the terminology of [4]) was determined from experimental data in [5], the volumetric heat-
transfer coefficient was calculated with formulas given in [4], and Xy (=X,) was found from
the formula recommended in [6]. The value obtained for the thermal Conducgivity was well cor-
related with the corresponding experimental value used in [1]. Since the coolant channel is
much longer than the internal scale of the porous metal, we neglect heat transfer at the
channel entrance and exit. The experimental justification for this possibility was given in
[{7]. The temperature scale T was defineéd as qH/Ay, where q is the dimensional heat flux sup-
plied to the inner tube of the experimental model. It is easy to see that this choice of T
guarantees that the dimensionless heat flux q? is independent of variations of g. According-
ly, the calculated dimensionless temperature fields are also independent of q. The "zero"
of temperature was taken as the coolant temperature far from the entrance to the porous metal.
More concisely, system (29) was solved with the following boundary conditions:
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=0, gi=1, ;=0 i=g:=0.

Figure 2 shows the results of the calculations. It is clear from the figure that the X
dependence of the temperature is weaker for the experimental than for the calculated values.
This "averaging" effect is apparently the result of longitudinal heat fluxes in the wall of
the inner tube. This effect is particularly noticeable for small X, the region where the cool-
ant enters the porous body, where the longitudinal heat fluxes reach a maximum. In addition,
the slope of the experimental curve in the region of the coolant exit from the porous body
indicates a definite outflow of heat from the hot end of the tube and the porous metal. The
diagram of the experimental model shows that the coolant collector is located here. Taking all
this into account, it should be noted that the calculated and experimental values agree rather
well. In conclusion we note that calculations performed with the algorithm in [1] do not com~
pare well with experiment, since, as stated previously, that algorithm cannot take account of
the axial symmetry of the model.
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EFFECT OF IMPURITY ATOMS IN FERROMAGNETS ON MAGNETIC RELAXATTION

P. P. Galenko UDC 621.317.41:538.27

Results are presented from an experimental study of magnetic relaxation in iron
specimens containing various amounts of carbon.

4 number of studies have been dedicated to time effects in ferromagnets [1-9, et al.].
Study of magnetic relaxation processes in these materials is of great practical significance
in connection with their wide use in machine construction, radioelectronics, computer tech-
nology, and other fields. The requirements for homogeneity and, especially, time stability
of properties being demanded of these materials are increasing continually.

At the present time, according to standard 802-58 [10], in defining the magnetic char-
acteristics of ferromagnetic materials it is necessary to consider the time required for re-
laxation processes.

One of the manifestations of time effects is a decrease in magnetic permeability of
ferromagnets over time after demagnetization by an ac magnetic field of decreasing amplitude.
This relaxation phenomenon has been termed magnetic permeability disaccommodation (MPD) and
appears especially intensely in iron containing impurity atoms.

The present study is dedicated to an investigation of MPD in iron.
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